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Abstract
Real-world applications often involve domain-
specific and task-based performance objectives that
are not captured by the standard machine learn-
ing losses, but are critical for decision making. A
key challenge for direct integration of more mean-
ingful domain and task-based evaluation criteria
into an end-to-end gradient-based training process
is the fact that often such performance objectives
are not necessarily differentiable and may even re-
quire additional decision-making optimization pro-
cessing. We propose the Task-Oriented Prediction
Network (TOPNet), an end-to-end learning scheme
that automatically integrates task-based evaluation
criteria into the learning process via a learnable
surrogate loss function, which directly guides the
model towards the task-based goal. A major ben-
efit of the proposed TOPNet learning scheme lies
in its capability of automatically integrating non-
differentiable evaluation criteria, which makes it
particularly suitable for diversified and customized
task-based evaluation criteria in real-world tasks.
We validate the performance of TOPNet on two
real-world financial prediction tasks, revenue sur-
prise forecasting and credit risk modeling. The ex-
perimental results demonstrate that TOPNet signif-
icantly outperforms both traditional modeling with
standard losses and modeling with hand-crafted
heuristic differentiable surrogate losses.

1 Introduction
Prediction models have been widely used to facilitate deci-
sion making across domains, e.g., retail demand prediction
for inventory control [Riemer et al., 2016], user behavior pre-
diction for display advertisement [Yang et al., 2017], and fi-
nancial market movement prediction for portfolio manage-
ment [Prado, 2018], to name a few. These models are often
trained using standard machine learning loss functions, such
as mean square error (MSE), mean absolute error (MAE) and
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cross-entropy loss (CE). However, these criteria commonly
used to train prediction models are often different from the
task-based criteria used to evaluate model performance [Ben-
gio, 1997; Donti et al., 2017]. For instance, a standalone im-
age classification model is often trained by optimizing cross-
entropy loss. However, when it is used to guide autonomous
driving, we may care more about misclassifying a traffic sign
vs. misclassifying a garbage can. In revenue surprise fore-
casting, financial institutes often train a regression model to
predict the revenue surprise for each public company mini-
mizing mean square error. However, they evaluate the model
performance based on the Directional Accuracy (percentage
of predictions that are more directional accurate) and the
Magnitude Accuracy (percentage of predictions that are 50%
more accurate) with respect to industry benchmarks (e.g. the
consensus of the Wall Street analysts1), which provide more
value for downstream portfolio management. In loan default
risk modeling, banks often train a classification model to pre-
dict the default probability of each loan application, and op-
timize the probability threshold to accept/reject loans with
low/high risk. Eventually, they evaluate the model perfor-
mance by aggregating the total profit made from those loans.

Despite the popularity of standard machine learning losses,
models trained with such standard losses are not necessarily
aligned with the task-based evaluation criteria and as a re-
sult may perform poorly with respect to the ultimate task-
based objective. One straightforward solution to this prob-
lem is to directly use the task-based evaluation criteria as
the loss function. However, task-based evaluation criteria
are often unfriendly to an end-to-end gradient-based training
process due to the fact that often such performance objec-
tives are not necessarily differentiable and may even require
additional decision-making optimization processing. Exist-
ing works [Elmachtoub and Grigas, 2017; Bengio, 1997;
Donti et al., 2017; Wilder et al., 2019a; Perrault et al., 2019;
Wilder et al., 2019b] in this area mainly focus on deriv-
ing heuristic surrogate loss functions that differentiate from
downstream evaluation criteria to the upstream prediction
model via certain relaxations or KKT conditions. However,
those derivations are mainly hand-crafted and task-specific.
As a result, it requires a considerable amount of effort to
find proper surrogate losses for new tasks, especially when

1https://www.investopedia.com/terms/c/consensusestimate.asp



the evaluation criteria are complicated or involve non-convex
optimization. Moreover, hand-crafted surrogate losses are
not optimized, which can hardly become the optimal choice.
Therefore, a general end-to-end learning scheme, which can
automatically integrate the task-based evaluation criteria, is
still needed.

We propose the Task-Oriented Prediction Network (TOP-
Net), a generic end-to-end learning scheme that automati-
cally integrates task-based evaluation criteria into the learn-
ing process via a learnable differentiable surrogate loss
function, which approximates the true task-based loss and
directly guides the prediction model to the task-based goal.
Specifically, (i) TOPNet learns a differentiable surrogate loss
function parameterized by a task-oriented loss estimator net-
work that approximates the true task-based loss given the pre-
diction, the ground-truth label and necessary contextual infor-
mation. (ii) TOPNet optimizes a predictor using the learned
surrogate loss function, to approximately optimize its perfor-
mance w.r.t. the true task-based loss. (iii) We demonstrate
the performance of TOPNet on two real-world financial pre-
diction tasks: a revenue surprise forecasting task and a credit
risk modeling task, where the former is a regression task and
the latter is a classification task. Applying TOPNet to these
two tasks, we show that TOPNet significantly boosts the ul-
timate task-based goal by integrating the task-based evalu-
ation criteria, outperforming both traditional modeling with
standard losses and modeling with heuristic differentiable (re-
laxed) surrogate losses.

2 Related Work
Integrating task-based evaluation criteria into the learning
process was studied under different names, such as task-
based learning and decision-focused learning. The earliest
work [Bengio, 1997], which is closely related to ours, op-
timizes the neural network based on returns obtained via a
hedging strategy, to predict financial prices. Later, Kao et
al. (2009) proposed Directed Regression, which minimizes
a convex combination of least square loss and a task-based
loss, to achieve a better regression performance w.r.t. the de-
cision objective. Elmachtoub and Grigas (2017) derived a
convex surrogate loss function called SPO+ loss via dual-
ity theory, to leverage the upstream prediction model and the
downstream optimization task for linear programming. Donti
et al. (2017) proposed task-based model learning for stochas-
tic programming, where they differentiate through the KKT
condition of the convex objective, to provide gradients for
the upstream prediction model to capture the downstream op-
timization objective. Recent works [Perrault et al., 2019;
Wilder et al., 2019a; Wilder et al., 2019b] applied a simi-
lar idea to security games, combinatorial optimization prob-
lems and graph optimization problems, to integrate the down-
stream objectives into the upstream modeling.

Those previous works [Bengio, 1997; Elmachtoub and
Grigas, 2017; Donti et al., 2017; Perrault et al., 2019;
Wilder et al., 2019a; Wilder et al., 2019b] mainly focus
on deriving a differentiable surrogate loss function for the
downstream evaluation criteria to provide gradients to the up-
stream prediction model. Even though those works have de-

veloped many surrogate losses for different evaluation crite-
ria, their approaches either require the objective to be convex
or use hand-crafted relaxation to approximate the ultimate
objective. In contrast, Task-Oriented Prediction Network
(TOPNet) does not require hand-crafted differentiation of the
downstream evaluation criteria. Instead, TOPNet learns a
differentiable surrogate loss via a task-oriented loss estima-
tor network, which automatically approximates the true task-
based loss and directly guides the upstream predictor towards
the downstream task-based goal. In the context of task-based
learning, TOPNet is the first work that automatically inte-
grates the true task-based evaluation criteria into an end-to-
end learning process via a learnable surrogate loss function.

3 Problem Formulation
We first formally define the task-based prediction problem
that we address in this paper. We use x ∈ X ⊆ Rd and
y ∈ Y for the feature and label variables. Given dataset
D = {(x1, y1), (x2, y2) ...,(xn, yn)}, which is sampled from
an unknown data distribution P with density function p(x, y),
our prediction task can be formulated as learning a condi-
tional distribution qθ(ŷ|x) that minimizes the expected task-
based loss (task-based criteria) `T (qθ(ŷ|x), p(y|x), c), i.e.,

min
θ

Ex∼p(x)[`
T (qθ(ŷ|x), p(y|x), c)], (1)

where c denotes some necessary contextual information re-
lated to task-based criteria, p(x) denotes the marginal dis-
tribution of x, and θ denotes the parameters of our prediction
model. As implied in formulation (1), we mainly consider the
tasks whose task-based losses can be computed point-wisely.

A key challenge of task-based learning comes from the fact
that the true task-based loss function `T (qθ(ŷ|x), p(y|x), c)
is often non-differentiable and may even involve additional
decision-making optimization processing, which cannot be
used directly in popular gradient-based learning methods.
For instance, in revenue surprise forecasting, the task-based
criteria evaluate a prediction ŷ based on both the true rev-
enue surprise y and the prediction of the consensus of the
Wall Street analysts c (in that case, both qθ(ŷ|x) and p(y|x)
are Dirac delta distribution). Specifically, the criteria com-
pute whether the prediction is more directional accurate and
whether the prediction is significantly (50%) more accurate
compared with the Wall Street consensus, which both involve
non-differentiable functions (see detailed formula in our ex-
periments). Likewise, in credit risk modeling, the task-based
criteria involve optimizing a probability decision threshold
pD to maximize the profit after approving all loan applica-
tions with a predicted default probability pi lower than pD.

A straightforward solution to this challenge is to use a
surrogate loss function `S(qθ(ŷ|x), p(y|x), c) to replace the
true task-based loss and guide the learning process. Exist-
ing works mainly focus on using standard machine learn-
ing loss functions, such as mean square error (MSE), mean
absolute error (MAE) and cross-entropy loss (CE), or other
task-specific differentiable loss functions [Bengio, 1997; El-
machtoub and Grigas, 2017; Donti et al., 2017; Perrault et
al., 2019; Wilder et al., 2019a; Wilder et al., 2019b] as the



surrogate loss, that is,

min
θ

Ex∼p(x)[`
S(qθ(ŷ|x), p(y|x), c)]. (2)

However, both standard machine learning losses and task-
specific differentiable losses are selected manually. Thus,
finding a proper surrogate loss function requires a consider-
able amount of effort, especially when the evaluation criteria
are complicated or involve non-convex optimization. There-
fore, such approaches require considerable customization and
do not provide a general methodology to task-based learning.

4 Task-Based Learning via A Learnable
Differentiable Surrogate Loss

Instead of manually designing a hand-crafted differentiable
loss, we propose to learn a differentiable surrogate loss func-
tion `Sω(qθ(ŷ|x), p(y|x), c) via a neural network parameter-
ized by ω, to approximate the true task-based loss and guide
the prediction model. Specifically, we formulate the task-
based learning problem as a bilevel optimization, i.e.,

min
θ

Ex∼p(x)[`
S
ω∗(qθ(ŷ|x), p(y|x), c)] (3)

subject to:
ω∗ = argmin

ω
Ex∼p(x)[D(`Sω(qθ(ŷ|x), p(y|x), c)||`T (qθ(ŷ|x), p(y|x), c))] (4)

, where D(·||·) is a discrepancy function.

In this paper, we assume that both `Sω(qθ(ŷ|x), p(y|x), c) and
`T (qθ(ŷ|x), p(y|x), c) are real-valued loss functions. Thus,
we mainly consider using absolute error loss or square error
loss as the discrepancy function, i.e., D(x||y) = |x − y| or
D(x||y) = (x− y)2.

Ex∼p(x)[`
T (qθ(ŷ|x), p(y|x), c)]

≤Ex∼p(x)[`
S
ω(qθ(ŷ|x), p(y|x), c)]]+ (5)

Ex∼p(x)[|`Sω(qθ(ŷ|x), p(y|x), c)− `T (qθ(ŷ|x), p(y|x), c)|]

≤Ex∼p(x)[`
S
ω(qθ(ŷ|x), p(y|x), c)]]+ (6)

E1/2

x∼p(x)[(`
S
ω(qθ(ŷ|x), p(y|x), c)− `T (qθ(ŷ|x), p(y|x), c))2]

(Jensen’s Inequality)

As shown in the inequality (5) and (6), if we use abso-
lute/square error loss as the discrepancy function and mini-
mize the discrepancy term (4) to a small value ε/ε2, then we
have

Ex∼p(x)[`
T (qθ(ŷ|x), p(y|x), c)] ≤ Ex∼p(x)[`

S
ω(qθ(ŷ|x), p(y|x), c)] + ε .

Therefore, since the expected true task-based loss is upper
bounded by the expected surrogate loss plus the discrepancy,
we can approximately (with an ε-tolerance) learn the predic-
tion model qθ(ŷ|x) w.r.t. the task-based loss via solving the
above bilevel optimization problem.

One straightforward idea to tackle the above bilevel opti-
mization problem is to use Lagrangian relaxation (LR), i.e.,

min
θ,ω

Ex∼p(x)[`
S
ω(qθ(ŷ|x), p(y|x), c)]+

λEx∼p(x)[D(`Sω(qθ(ŷ|x), p(y|x), c)||`T (qθ(ŷ|x), p(y|x), c))]
, where λ is a non-negative weight (we set λ = 1). (7)
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Figure 1: Overview of the Task-Oriented Prediction Network.

However, given the fact that `T (qθ(ŷ|x), p(y|x), c) is
non-differentiable, we cannot directly use gradient-based
method to minimize LR (7) w.r.t. both θ and ω. For-
tunately, though the second term in the LR (7) is non-
differentiable w.r.t. θ, it is differentiable w.r.t. ω given
the fact that `T (qθ(ŷ|x), p(y|x), c) does not involve ω and
`Sω(qθ(ŷ|x), p(y|x), c) is differentiable. Therefore, instead of
minimizing LR (7) directly using all parameters, we propose
to separate the optimization regarding θ and ω, and only min-
imize the first term in LR (7) w.r.t. θ, i.e.,

min
θ

Ex∼p(x)[`
S
ω(qθ(ŷ|x), p(y|x), c)] (8)

min
ω

Ex∼p(x)[`
S
ω(qθ(ŷ|x), p(y|x), c)]+ (9)

Ex∼p(x)[D(`Sω(qθ(ŷ|x), p(y|x), c)||`T (qθ(ŷ|x), p(y|x), c))]

Intuitively, we are alternating between (i) optimizing the pre-
diction model qθ(ŷ|x) w.r.t. the current learned surrogate loss
and (ii) minimizing the gap between the learned surrogate
loss and the true task-based loss obtained from the current
prediction model. One can see, the learning of the prediction
model and the surrogate loss depends on each other. Thus, a
bad surrogate loss would mislead the prediction model and
vice versa. For example, if the true task-based loss is a
bounded loss function, then with a bad prediction model the
learned surrogate loss is likely to get stuck on some insen-
sitive area, where the loss is saturated due to the huge differ-
ence between qθ(ŷ|x) and p(y|x). Therefore, instead of start-
ing learning the prediction model with a randomly initialized
surrogate loss function, we propose to ”warm-up” the pre-
diction model qθ(ŷ|x) with a designed warm-up loss function
`W (qθ(ŷ|x), p(y|x), c). Thus, we can warm up the prediction
model to be close to the ground truth so that the learning of
the surrogate loss would focus more on the sensitive area and
better boost the task-based performance. In our experiments,
we investigated different warm-up losses ranging from stan-
dard machine learning losses to heuristic surrogate losses. We
empirically show that the model would achieve a better per-
formance with the ”warm-up” step.

5 End-to-End Implementation via
Task-Oriented Prediction Network

We instantiate the task-based learning process described
above via the Task-Oriented Prediction Network (TOPNet).
As depicted in Fig.1, a feature extractor G is first applied to



Algorithm 1 End-to-End learning process for TOPNet

Input: xi, yi and ci are raw input features, ground-truth la-
bel and corresponding contextual information sampled
iid from the training setDtrain. `T (·, ·, ·) is the true task-
based loss function. `W (·, ·, ·) is the warm-up loss func-
tion. D(·||·) is the loss discrepancy function. T, P and
G denote the task-based loss estimator, the predictor and
the feature extractor respectively. Ntrain is the number
of training iterations. Npre is the number of iterations for
”warm-up” pretraining. For ease of presentation, here we
assume the batch size is 1.

1: for t← 1 to Ntrain do
2: Sample a data point (xi, yi) from Dtrain.
3: Make prediction qθ(ŷi|xi) = P (G(xi)).
4: Invoke the true task-based criteria to compute the true

task-based loss `T (qθ(ŷi|xi), yi, ci).
5: Approximate the true task-based loss using the learn-

able surrogate loss `SωT
(qθ(ŷi|xi), yi, ci) = T (qθ(ŷi|xi), yi, ci).

6: Update the task-oriented estimator T via
min
ωT

D(`SωT
(qθ(ŷi|xi), yi, ci)||`T (qθ(ŷi|xi), yi, ci)).

7: if t ≤ Npre then Update the prediction model (P and
G) using the warm-up loss: min

θG,θP
`W (qθ(ŷi|xi), yi, ci).

8: else Update the prediction model (P andG) using the
learned surrogate loss: min

θG,θP
`SωT

(qθ(ŷi|xi), yi, ci).
9: end if

10: end for

extract meaningful features from the raw input data xi. Then,
a predictor network P takes the extracted feature G(xi) to
predict the conditional distribution P (G(xi)) = qθ(ŷi|xi) (θ
denotes the parameters in P and G). Note that, in practice,
we do not have access to the true distribution p(y,x). There-
fore we use the empirical distribution, i.e., a uniform distribu-
tion p(yi,xi) over samples in the dataset, to replace p(y,x).
Given the fact that the conditional distribution p(yi|xi) is in-
deed a Dirac Delta distribution over the value yi, for ease of
presentation, we use the point-wise ground truth label yi to
replace the role of p(yi|xi) in the following content. With
our prediction qθ(ŷi|xi), the ground truth label yi and nec-
essary contextual information ci concerning the task, we can
invoke the true task-based evaluation criteria, which poten-
tially involve a decision-making optimization process, to gen-
erate the true task-based loss `T (qθ(ŷi|xi), yi, ci). Mean-
while, a task-oriented loss estimator network T takes the pre-
dictions qθ(ŷi|xi), the labels yi, and the contextual infor-
mation ci, to approximate the true task-based loss via min-
imizing the discrepancy between the learned surrogate loss
`SωT

(qθ(ŷi|xi), yi, ci) (ωT denotes the parameters in T ) and
the true task-based loss. Finally, we can update the pre-
diction model using the gradients obtained from the learned
surrogate loss function. As we discussed in the previ-
ous section, to facilitate the learning of both qθ(ŷ|x) and
`SωT

(qθ(ŷi|xi), yi, ci), we propose to warm-up the prediction
model using a warm-up loss function `W (qθ(ŷ|x), yi, ci),
which could be either a standard machine learning loss or a

designed heuristic loss, for the first Npre iterations. In our
experiments, we use the square error as the loss discrepancy
function D(·||·) due to its better empirical performance com-
pared with the absolute error. We empirically set the hyper-
parameter Npre = |Dtrain| to just warm up the prediction
model for one training epoch. We summarize the implemen-
tation of the alternative minimizing process in Algorithm 1.

6 Experimental Results
TOPNet is a generic learning scheme that can be used in a
variety of applications with task-based criteria. In this sec-
tion, we validate its performance via datasets from two real-
world applications in finance. Due to business confidential-
ity, we are not allowed to share the datasets. The experiments
are mainly designed to compare the benefit of using TOPNet
learning scheme over standard machine learning schemes or
hand-crafted heuristic surrogate loss functions.

General Experimental Setup: For all models in our ex-
periments, the training process was done for 50 epochs, using
a batch size of 1024, an Adam optimizer [Kingma and Ba,
2014] with a learning rate of 3e-5, and early stopping to ac-
celerate the training process and prevent overfitting.

6.1 Revenue Surprise Forecasting
Revenue growth is the key indicator of the valuation and prof-
itability of a company and it is widely used for investment de-
cisions [Jegadeesh and Livnat, 2006], such as stock selection
and portfolio management. Due to the long tail distribution
of revenue growth, the investment communities usually pre-
dict revenue surprise which is given by revenue growth mi-
nus consensus. Here, consensus is the average of the Wall
street estimates of revenue growth published by stock ana-
lysts. Despite the fact that revenues are published quarterly,
daily forecasts of revenue surprise enable investors to adjust
their portfolio in a granular way for return and risk analy-
sis. To predict quarterly revenue surprise at the daily level
before their announcement, we collect information includ-
ing quarterly revenue, consensus, stock price and various of
financial indicators of 1090 US public companies ranging
from Jan 1st, 2004 to June 30th, 2019. Each data point is
associated with a 10x12-dimensional feature vector describ-
ing up-to-date sequential historical information of the cor-
responding company. The label of each data point is a real
number describing the revenue surprise of the corresponding
company on that specific date. We split the whole dataset
chronologically into training set (01-01-2004 to 06-30-2015,
3,267,584 data points), validation set (07-01-2015 to 06-30-
2017, 465,383 data points) and test set (07-01-2017 to 06-
30-2019, 421,225 data points) to validate the performance
of models. Note that some companies only have a few data
points due to their short history. Thus, we filtered compa-
nies to make sure that all remaining companies have enough
(1,000) historical data points in the training set and end up
using 902 companies in our experiments. Even though we
have about 4 million data points, on average each company
only has about 3,600 training examples. Therefore, instead
of learning a model for each company, we aim to use all data
points to learn a company-agnostic prediction model. Though



it is possible to build a multi-task learning framework for this
specific task, it is out of the scope of this paper.

Task-based Criteria
In this regression problem, the task-based criterion is the
total reward calculated based on the Directional Accuracy
(DirAcc) and the Magnitude Accuracy (MagAcc) with re-
spect to the industry benchmark, consensus. To be specific,

DirAcci =

{
α if sign( ˜̂yi) = sign(ỹi)

−β if sign( ˜̂yi) 6= sign(ỹi)
MagAcci =

{
γ if |yi − ŷi| < 0.5|yi|
0 otherwise

where ˜̂yi = ŷi − median(ŷ), ỹi = yi − median(y), ŷi (yi)
denotes predicted (true) revenue surprise of a public com-
pany at a specific date, sign(·) denotes the sign function, and
median(·) represents the median of the predicted (true) rev-
enue surprise of data points of all the companies within the
same quarter as the i-th data point. Here, we use DirAcci
and MagAcci to denote the Directional Hit/Miss and Magni-
tude Hit/Miss of data point i, and α, β and γ are 3 param-
eters denoting the reward/penalty of Directional Hit, Direc-
tional Miss, and Magnitude Hit. In our experiments, we set
α = $5.00, β = $6.11 and γ = $2.22 based on business
judgement.

Intuitively, the DirAcc measures the percentage of pre-
dictions among all the companies that are more directional
accurate than the industry benchmark, which is critical for
long/short investment decisions. The DirAcc uses the median
as the anchor to adjust both our prediction and the label in or-
der to cancel the seasonal trend within a quarter. The MagAcc
evaluates the percentage of predictions that are significantly
(50%) more accurate than the industry benchmark, which is
the essential input for optimizing the weight of stocks in a
portfolio. Given DirAcci and MagAcci, the task-based goal is
to maximize the average profit the model earned from n pre-
dictions, i.e., 1

n

∑n
i=1 DirAcci + MagAcci. Since algorithm

1 minimizes the loss function, we use the negative of equa-
tion (6.1) as the task-based loss in TOPNets.

Benchmark Methods
(i) Models that are trained with standard machine learn-
ing loss function: In this regression task, we selected mean
square error (MSE) loss and mean absolute error (MAE) loss
as candidates of standard machine learning loss functions.
(ii) Models that are trained with heuristic surrogate loss
functions: Given the task-based criteria, we observe that a
proper heuristic surrogate loss function could be designed by
approximating DirAcci and MagAcci using tanh(·), i.e.,

DirAcci ≈ α(1 + sign( ˜̂yi · ỹi))/2 + β(1− sign( ˜̂yi · ỹi))/2
≈ α(1 + tanh(k · ˜̂yi · ỹi))/2 + β(1− tanh(k · ˜̂yi · ỹi))/2
MagAcci ≈ γ(1 + sign(0.5|yi| − |yi − ŷi|)/2)
≈ γ(1 + tanh(k · (0.5|yi| − |yi − ŷi|))/2)

Here, k is a scale factor and we neglect some boundary situa-
tions such as sign( ˜̂yi) = sign(ỹi) = 0 and |yi− ŷi| = 0.5|yi|.
The key idea of this approximation is to approximate sign(x)
with tanh(kx) since limk→+∞ tanh(kx) = sign(x). To sat-
urate the performance of this surrogate loss function, we ex-
haustively explored the best scale factor k and found that it
achieves the best performance with k = 100.
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Figure 2: The task-based performance of all models in the revenue
surprise forecasting task. a. Evaluation on the validation set along
the training process. b. Evaluation (mean and stderr) on the test
set for 15 runs of all models. The TOPNet warmed up with MAE
(TOPNet MAE) achieved the best performance.

Experimental Setup

We use the Long Short-Term Memory (LSTM) networks
[Hochreiter and Schmidhuber, 1997] as the feature extrac-
tors and 3-layer fully-connected neural networks as the pre-
dictors for all models in our experiments. For a fair com-
parison, we explored the configuration of networks for all
models to saturate their performance. For LSTMs and 3-
layer fully-connected networks, the number of hidden units
are chosen from [64, 128, 256, 512, 1024]. In TOPNets,
the task-oriented loss estimator T is a 3-layer fully-connected
neural network with hidden units 1024, 512, 256.

Performance Analysis

We did 15 runs for all models with different random seed
to compute the mean and the standard error of their perfor-
mance. Since we proposed to ”warm up” the predictor, we in-
vestigated the performance of TOPNets with different warm-
up losses (denoted as TOPNet MAE, TOPNet MSE, TOP-
Net Heuristic, and TOPNet NoWarmUp). As shown in Fig.2,
TOPNets significantly outperformed the standard machine
learning models trained with either MSE or MAE, boosting
the average profit by about 30%. TOPNets also outperformed
the model trained using the hand-crafted heuristic surrogate
loss function, showing the advantage of using an optimized
learnable surrogate loss. Moreover, as we expected, warming
up the predictor does significantly (14%) boost the perfor-
mance compared with the TOPNet without a warm-up step
(TOPNet NoWarmUp). Interestingly, we observe that though
the model trained with the heuristic loss alone achieved a bet-
ter performance than the models trained with MSE or MAE,
the heuristic loss actually made it harder to further improve
the predictor with the learned surrogate loss. The same phe-
nomenon can also be found in the next task.



6.2 Credit Risk Modeling
Credit is a fundamental tool for financial transactions and
many forms of economic activity. The main elements of
credit risk modeling include the estimation of the probabil-
ity of default and the loss given default [Doumpos et al.,
2019]. In this study, our data includes 1.3 million personal
loan applications and their payment history. Each loan is
associated with an 88-dimensional feature vector and a bi-
nary label denoting whether the loan application is defaulted
or not. The feature vector includes information such as the
loan status (e.g., current, fully paid, default or charged off),
the anonymized applicant’s information (e.g., asset, debt, and
FICO scores) and the loan characteristics (e.g., amount, in-
terest rate, various cost factors of default), etc. We split the
whole dataset randomly into a training set (80%), a valida-
tion set (10%), and a test set (10%) to evaluate model perfor-
mance.

Task-based Criteria
The credit risk data provides information to compute the
profit/loss of approving a loan application, i.e.,

Profit/Loss = (Received Principle + Received Interest− Funded Amount)

+(Recovery Amount− Recovery cost)

Note also that, the recovery happens only if the loan has de-
faulted and that if we reject a loan application, we simply
earn $0 from it. Recall in credit risk modeling, the task-based
criteria involve the prediction of the default probability pi of
the i-th loan application as well as the probability decision
threshold pD to maximize the profit after approving all loan
applications with a default probability lower than pD, i.e.,

1

n

n∑
i=1

Profit/Lossi · I{pi < pD}+ 0 · I{pi ≥ pD} (10)

Here, we use I{ ·} to denote the indicator function.

Benchmark Methods
(i) Models that are trained with standard machine learn-
ing loss function: In this classification task, we selected
cross-entropy loss as the standard machine learning loss.
(ii) Models that are trained with heuristic surrogate loss
functions: Given the profit/loss of approving a loan appli-
cation and the predicted probability of default pi, a natural
surrogate loss function is,

(1− pi) · profit/loss + pi · 0,

which measures the expected profit/loss given pi.

Experimental Setup
We use 3-layer fully-connected neural networks with hidden
units 1024, 512, 256 for the feature extractors G of all mod-
els, and the predictors P are linear layers. In TOPNets, the
task-oriented loss estimator T is a 3-layer fully-connected
neural network with hidden units 1024, 512, 256.

In this task, the evaluation criteria would optimize the deci-
sion probability threshold pD to maximize the average profit
via a validation set. Specifically, it would sort the data points
based on the predicted default probability pi and optimize the
threshold pD based on the cumulative sum of the profit/loss

Models Average Profit per Loan ($)
Cross-Entropy 618.4± 0.3
Heuristic 770.4± 0.2
TOPNet NoWarmUp 770.6± 0.2
TOPNet CE 784.1± 0.2
TOPNet Heuristic 777.0± 0.3

Table 1: Task-based loss results (mean and stderr) of all models in
the credit risk modeling task. The TOPNet warmed-up with cross-
entropy loss (TOPNet CE) achieved the best performance.

of approving load applications with pi < pD. Note that,
TOPNet requires point-wise task-based loss as the feedback
from the task-based criteria in the training phase. However,
computing the task-based loss involves making decisions (ap-
prove/reject), which requires the decision probability thresh-
old pD that is supposed to be optimized on the validation set.
Noting that, the decision probability threshold pD is a rel-
ative value that depends on the predicted default probability
pi. Therefore, maintaining the order of predicted probabilities
while shrinking or increasing them together does not affect
the ultimate profit but leads to a different optimal threshold.
Conversely, given a fixed decision threshold pD (e.g., 0.5),
we can learn a predictor that predicts the default probability
with respect to the threshold. Thus, in the learning process of
TOPNet, we used a fixed decision threshold (0.5) to make de-
cisions and provide task-based losses in Algorithm 1. During
the test, we still apply the same threshold optimization pro-
cess on the predictions made by TOPNets as other models.

Performance Analysis
We did 15 runs for all models with different random seed
to compute the mean and the standard error of their perfor-
mance. We evaluate the performance of TOPNets that use
cross-entropy loss or heuristic loss as the warm-up loss func-
tion (denoted as TOPNet CE and TOPNet Heuristic). We
also evaluate the performance of the TOPNet without a warm-
up step. As shown in Table.1, TOPNets significantly outper-
formed the standard machine learning models learned with
cross-entropy, boosting the average profit by $165.7. Tak-
ing advantage of the optimized learnable surrogate loss func-
tion, the TOPNet warmed-up with cross-entropy loss further
boosts the profit by $13.5 per loan compared with the model
trained using the heuristic loss function. Similar to the phe-
nomenon in the previous task, the TOPNet warmed-up with
the heuristic loss function performed slightly worse than the
TOPNet warmed-up with cross-entropy loss.

7 Conclusion
In this paper, we proposed Task-Oriented Prediction Network
(TOPNet), a generic learning scheme that automatically in-
tegrates the true task-based evaluation criteria into an end-
to-end learning process via a learnable surrogate loss func-
tion. Tested on two real-world financial prediction tasks,
we demonstrate that TOPNet can significantly boost the ul-
timate task-based goal, outperforming both traditional mod-
eling with standard losses and modeling with heursitic differ-
entiable (relaxed) surrogate losses. Future directions include
exploring how to integrate task-based criteria that involve a
strong connection among multiple data points.
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