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Abstract
We introduce Deep Reasoning Networks (DR-
Nets), an end-to-end framework that combines
deep learning with constraint reasoning for solv-
ing pattern de-mixing problems, typically in
an unsupervised or very-weakly-supervised set-
ting. DRNets exploit problem structure and prior
knowledge by tightly combining constraint rea-
soning with stochastic-gradient-based neural net-
work optimization. Our motivating task is from
materials discovery and concerns inferring crystal
structures of materials from X-ray diffraction data
(Crystal-Structure-Phase-Mapping). Given the
complexity of its underlying scientific domain, we
start by introducing DRNets on an analogous but
much simpler task: de-mixing overlapping hand-
written Sudokus (Multi-MNIST-Sudoku). On
Multi-MNIST-Sudoku, DRNets almost perfectly
recovered the mixed Sudokus’ digits, with 100%
digit accuracy, outperforming the supervised state-
of-the-art MNIST de-mixing models. On Crystal-
Structure-Phase-Mapping, DRNets significantly
outperform the state of the art and experts’ capa-
bilities, recovering more precise and physically
meaningful crystal structures.

1. Introduction
Deep learning has achieved tremendous success in areas
such as vision, speech recognition, language translation,
and autonomous driving. Nevertheless, certain limitations
of deep learning are generally recognized, in particular, lim-
itations due to the fact that deep learning approaches heavily
depend on the availability of large amounts of labeled data.
In certain domains, such as scientific discovery, it is of-
ten the case that scientists do not have large amounts of
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(a) The two ground-truth Sudokus (b) Input mixture

(c) DRNets de-mixed Sudokus (d) Reconstructed mixture

Figure 1. (a) Two 4x4 Sudokus: The cells in each row, column,
and any of the four 2x2 boxes involving the corner cells have non-
repeating digits. (b) Two overlapping Sudokus, with a mixture
of two digits in each cell: one from 1 to 4 and the other from 5
to 8. (c) In Multi-MNIST-Sudoku, the digits of two overlapping
hand written Sudokus (b) are de-mixed by DRNets. (d) DRNets’
reconstructed overlapping hand written Sudokus.

labeled data and instead have to rely on prior knowledge to
make sense of the data. One grand challenge in scientific
discovery is to perform high-throughput unsupervised inter-
pretation of scientific data, given its exponential growth in
generation rates, dramatically outpacing humans’ ability to
analyze them. Herein we consider pattern de-mixing prob-
lems, which involve decomposing a mixed signal into the
collection of source patterns, such as separating mixtures of
X-ray diffraction (XRD) signals into the source XRD sig-
nals of the corresponding crystal structures, a key challenge
in materials discovery (Stanev et al., 2018; Gomes et al.,
2019). More generally, pattern de-mixing problems are per-
vasive in scientific areas as diverse as biology, astronomy,
and materials science, as well as in commercial applications,
e.g., healthcare and music.

We propose Deep Reasoning Networks (DRNets), an end-
to-end framework that combines deep learning with con-
straint reasoning for solving unsupervised or very-weakly-
supervised pattern de-mixing tasks. DRNets are greatly
motivated by a complex scientific discovery task that con-
cerns inferring crystal structures of materials from X-ray
diffraction data (Crystal-Structure-Phase-Mapping). Given
the scientific complexity of this domain, we start by intro-
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Figure 2. Deep Reasoning Networks (DRNets) perform end-to-end deep reasoning by encoding a latent space of the input data that is
constrained to satisfy the Sudoku rules and is used by a generative decoder to generate the targeted output. (a) Prior knowledge includes
prototypes of digits, which are used to pre-train and build the decoder’s generative module, and the Sudoku rules, which help DRNets
reason about the overlapping digits. (b) The reasoning modules batch data points involved in the same constraints (cells in rows, columns,
blocks of a Sudoku) together, enforce that the latent space satisfies prior knowledge (Sudoku rules), and dynamically adjusts the weights
of constraints based on their satisfiability. (c) The overall objective combines responses from the generative decoder, to reconstruct the
input image, and responses from the reasoning modules, to enforce that the latent space adheres to the Sudoku constraints.

ducing DRNets on an analogous but much simpler task: dis-
entangling two overlapping hand-written Sudokus (Multi-
MNIST-Sudoku) (see Fig.1). Both de-mixing tasks require
probabilistic reasoning to interpret noisy and uncertain data,
while satisfying a set of rules: thermodynamic rules and
Sudoku rules, respectively. For example, de-mixing hand
written digits is challenging, but it is more feasible when we
reason about the rules concerning the two overlapping Su-
dokus. Crystal structure phase mapping is yet substantially
more complex. In fact, crystal structure phase mapping
easily becomes too complex for experts to solve and is a
major bottleneck in high-throughput materials discovery.
Moreover, unlike the Multi-MNIST-Sudoku, where we can
generate massive instances from MNIST dataset, scientific
tasks such as crystal structure phase mapping often only
have hundreds of data points and no labeled training data,
which greatly challenges classical data-hungry deep learn-
ing models. Therefore, supervision by constraint reasoning
is strongly desired, and strongly motivated by extensive
prior knowledge from sources ranging from fundamental
principles to the intuitive experience of scientists.

Our contributions: (1) We introduce an end-to-end frame-
work named Deep Reasoning Networks (DRNets), which
combines deep learning with constraint reasoning for unsu-
pervised or very-weakly-supervised de-mixing tasks. Specif-
ically, DRNets perform end-to-end deep reasoning by en-
coding a latent space of the input data that captures the
structure and prior knowledge constraints within and among
data points (Fig.2). The latent space is used by a generative
decoder to generate the targeted output, which should be
consistent with the input data and prior knowledge. DR-
Nets optimize an objective function capturing the overall

problem objective as well as prior knowledge in the form
of weighted constraints that control the encoding of the
latent space. (2) We introduce a group of entropy-based
continuous relaxations that use probabilistic modeling to
encode general discrete constraints in DRNets, including
sparsity, cardinality and so-called All-Different constraints.
To optimize those constraints, we introduce constraint-aware
stochastic gradient descent, which is a variant of standard
SGD method (Robbins & Monro, 1985) that batches data
points involved in the same constraint component together
and dynamically adjust the constraints’ weights as a func-
tion of their satisfiability. In the following sections, we
show how to encode Multi-MNIST-Sudoku and Crystal-
Structure-Phase-Mapping as DRNets, by properly defin-
ing the structure of the latent space, additional reasoning
modules to model the problem constraints (prior knowl-
edge), and the components of the objective function. De
facto, these examples illustrate how to develop “gadgets”
to encode a variety of constraints and prior knowledge in
DRNets. (3) We demonstrate the potential of DRNets on
two de-mixing tasks with detailed experimental results. We
show how (3.1) DRNets significantly outperformed the state
of the art and human experts on Crystal-Structure-Phase-
Mapping instances, recovering more precise, interpretable,
and physically meaningful crystal structure pattern decom-
positions. DRNets solved a previously unsolved chemical
system, which subsequently led to the discovery of a new
material that is important for solar fuels technology. (3.2)
On Multi-MNIST-Sudoku instances, without direct super-
vision, DRNets perfectly recovered the digits in the mixed
Sudokus with 100% digit accuracy, outperforming the super-
vised state-of-the-art MNIST de-mixing models, including
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CapsuleNet (Sabour et al., 2017) and ResNet (He et al.,
2016).

2. Related Work
DRNets have been motivated by scientific tasks such as
crystal phase mapping that involve identifying or de-mixing
patterns in data that satisfy prior scientific knowledge. In
general, for such tasks there are no labeled datasets. So our
work focus on unsupervised or very-weakly-supervised
learning, using prior scientific knowledge.

Most closely related work: Unsupervised or weakly su-
pervised de-mixing approaches. Pattern de-mixing ap-
proaches have been developed under the name of source
separation in the signal processing community. The un-
supervised methods in this area mostly try to solve the
de-mixing, which is in general ill-posed, using different
regularizations. Among existing methods, recent work for
weakly supervised audio source separation (Zhang et al.,
2017) is most related to DRNets since they also utilize the
information of pure source patterns to regularize/constrain
the separated sources. However, their model learns a dis-
criminator to discriminate the reality of separated sources,
while DRNets utilize the generator of a pre-trained genera-
tive adversarial network (GAN) as the generative model of
possible sources. Moreover, their model does not exploit
any prior knowledge or constraint reasoning and therefore
they need the true labels of mixed sources, which is almost
the goal of our tasks, and therefore it is not applicable to our
settings.

We now consider the state-of-the-art models for the tasks
considered in this paper. For Crystal-structure-phase-
mapping, due to the lack of labeled datasets, existing mod-
els (Ermon et al., 2015; Xue et al., 2017; Bai et al., 2017;
2018; Stanev et al., 2018) are mainly based on non-negative
matrix factorization (NMF), which is in general unsuper-
vised. Stanev et al. (2018) proposed the NMF-k algorithm,
which applies a customized clustering process over the re-
sults of thousands of runs of pure NMF algorithm (Long
et al., 2009) to cluster the common phase patterns. However,
NMF-k does not enforce prior knowledge (namely thermo-
dynamic rules) and therefore the solutions produced are
often not completely physically meaningful. To address this
limitation several approaches have been developed that use
external mixed-integer programming modules to interact
with the NMF de-mixing module to enforce prior knowl-
edge (Ermon et al., 2015; Bai et al., 2017; 2018; Gomes
et al., 2019). However, the coordination barrier between the
NMF de-mixing module and the reasoning module often
results in inferiror performance, where the solution satis-
fies constraints at the cost of huge reconstruction loss. In
contrast to existing models, DRNets seamlessly integrate
the pattern de-mixing module and the reasoning module,

recovering almost exact ground truth decomposition. In our
experiments we thoroughly compare DRNets’ performance
against the state of the art (IAFD (Gomes et al., 2019) and
NMF-k (Stanev et al., 2018)) for crystal-structure pattern
de-mixing. MNIST de-mixing was first studied by Hin-
ton et al. in 2000, where the aim is to identify or de-mix
overlapping digits coming from the MNIST datasets (Le-
Cun et al., 1998). More recently, it has been tackled with
state-of-the-art neural network models such as CapsuleNet
(Sabour et al., 2017) and ResNet (He et al., 2016). Existing
works concerning this task are mainly in supervised settings,
where we have labels of digits for each overlapping image.
However, in this paper, we aim to tackle this task in a very-
weakly-supervised setting, where we only have access to
the prototypes of single digits and the extra Sudoku rules.
Due to the lack of existing models with the same setting, we
compared DRNets’ performance against the state-of-the-art
supervised models (CapsuleNet and ResNet). By utilizing
the supervision from prior knowledge and constraint rea-
soning, we show that DRNets’ outperformed all supervised
models with 100% digit accuracy.

Enhancing deep learning with symbolic prior knowl-
edge. Exploiting problem structure and reasoning about
prior knowledge has been of increasing interest to facili-
tate deep learning (Manhaeve et al., 2018; Garcez et al.,
2019). In computer vision, symmetry constraints, bone-
length constraints and linear constraints were introduced for
human pose estimation (Zhou et al., 2017; 2016) and image
segmentation (Pathak et al., 2015) to regularize the output
and enhance generalization. In natural language processing,
Hu et al. (2016a;b) introduced the posterior regularization
(Ganchev et al., 2010) framework into deep learning to incor-
porate rule-based grammatical knowledge using first order
logic. Xu et al. (2017) proposed a semantic loss function to
enforce propositional logic constraints on the output of neu-
ral networks for semi-supervised multi-class classification
tasks. Wang et al. (2019) proposed SATNet, which approx-
imately encodes a MAXSAT solver into a neural network
layer called SATNet layer, to explicitly learn the logical
structures (e.g., parity function and Sudoku) from the la-
beled training data. Previous works in this area primarily
focus on supervised or semi-supervised settings for data-rich
domains, where direct supervision from labels reduce the
importance of explicitly reasoning about prior knowledge.
In contrast, with an unsupervised setting, the supervision of
DRNets comes from reasoning about prior knowledge and
self-reconstruction, which is strongly desired for problems
in scientific discovery due to the lack of labeled datasets,
and strongly motivated by extensive prior knowledge from
sources ranging from fundamental principles to the intuitive
experience of scientists. Among existing works, SATNet
is mostly related to DRNets in the sense of bridging rea-
soning with deep learning. However, SATNet is essentially



Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning

designed for learning logical structures (prior knowledge)
from labeled training examples while DRNets aim to fa-
cilitate unsupervised learning with known constraints. In
terms of the encoding of the reasoning module, the seman-
tic loss (Xu et al., 2017) is mostly related to ours. How-
ever, the semantic loss encodes constraints by propositional
logic, which requires enumerating all possible Boolean as-
signments that satisfy the constraints. Consequently, the
semantic loss has to enumerate a large number of assign-
ments to encode constraints such as k-sparsity constraints
and All-Different constraints, which is not applicable to
tasks considered in this paper.

3. Deep Reasoning Networks
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Figure 3. The reduction flow of Deep Reasoning Networks.

DRNets (see Fig. 2) are inspired by human reasoning (Shiv-
hare & Kumar, 2016): we abstract patterns to higher-level
descriptions and combine them with prior-knowledge to fill-
in the gaps. Consider Multi-MNIST-Sudoku (Fig. 1): we
first guess the digits in each cell based on the patterns; we
re-adjust our initial beliefs and re-image the overlapping pat-
terns by reasoning about Sudoku rules and comparing them
to the original ones, potentially involving several iterations.

Formally, to leverage problem structure and prior knowl-
edge using constraint reasoning, DRNets formulate unsu-
pervised pattern de-mixing as data-driven constrained
optimization:

min
θ

1

N

N∑
i=1

L(G(φθ(xi)),xi)

s.t. φθ(xi) ∈ Ωlocal and (φθ(x1), ..., φθ(xN )) ∈ Ωglobal (1)

In this formulation, N is the number of input data points,
xi ∈ Rn is the i-th n-dimensional input data point, φθ(·)
is the function of the encoder in DRNets parameterized by
θ, G(·) denotes the generative decoder, L(·, ·) is the loss
function (e.g., evaluating the reconstruction of patterns),
Ωlocal and Ωglobal are the constrained spaces w.r.t. con-
straints involving a single input data point and constraints
involving several input data points, respectively. G(·) is in
general a fixed pre-trained or parametric generative model,
which is obtained from either the prototypes or a theoretical
model of pure patterns using prior knowledge. For example,
in Multi-MNIST-Sudoku, G(·) is a pre-trained conditional
GAN (Mirza & Osindero, 2014) using hand-written digits,

and for Crystal-Structure-Phase-Mapping, G(·) is a Gaus-
sian Mixture model based on idealized known pure crystal
structures. Herein, the output of the encoder φθ(xi) involves
the encodings of the possible de-mixed pure patterns along
with their probabilities. Furthermore, the encodings φθ(xi)
are constrained by space Ωlocal and space Ωglobal to sat-
isfy prior knowledge. The generative decoder G(φθ(xi))
decodes φθ(xi) into the potential corresponding pure pat-
terns and remix them to reconstruct the input mixture xi.

Note that constraints can involve several (potentially all)
data points: e.g., in Sudoku, all digits should form a valid
Sudoku and in crystal-structure-phase-mapping, all data
points in a composition graph should form a valid phase
diagram. Thus, we specify local and global constraints in
DRNets – local constraints only involve a single input data
point whereas global constraints involve several input data
points, and they are optimized using different strategies.

Solving the data-driven constrained optimization problem
(1) directly is extremely challenging since the objective
function in general involves deep neural networks, which
are highly non-linear and non-convex, and prior knowledge
often even involves combinatorial constraints (Fig.3). There-
fore, we use Lagrangian relaxation to approximate equation
(1) with an unconstrained optimization problem, i.e.,

min
θ

1

N

N∑
i=1

L(G(φθ(xi)),xi) + λlψl(φθ(xi))

+

Ng∑
j=1

λgjψ
g
j ({φθ(xk)|k ∈ Sj}) (2)

Here, Ng denotes the number of global constraints, Sj de-
notes the set of indices w.r.t. the data points involved in
the j-th global constraint, and ψl, ψgj denote the penalty
functions for local constraints and global constraints, re-
spectively, along with their corresponding penalty weights
λl and λgj . In the following, we propose two mechanisms to
tackle the above unconstrained optimization task (Fig.3).

Continuous Relaxation: Prior knowledge often involves
combinatorial constraints with discrete variables that are
difficult to optimize in an end-to-end manner using gradient-
based methods. Therefore, we need to design proper contin-
uous relaxations for discrete constraints to make the overall
objective function differentiable. Existing works (Hu et al.,
2016a; Xu et al., 2017) proposed several relaxations for
injecting first-order logic and propositional logic into deep
learning. However, limited by the expressive power of those
logic formulas, we would need a large number of logical
terms to express constraints such as k-sparsity constraints or
All-Different constraints. Therefore, to instantiate DRNets
for our tasks, we propose a group of entropy-based continu-
ous relaxations to encode general discrete constraints such
as sparsity, cardinality and All-Different constraints (see
Fig.4). We construct continuous relaxations based on prob-
abilistic modelling of discrete variables, where we model
a probability distribution over all possible values for each
discrete variable. For example, in Multi-MNIST-Sudoku,
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Figure 4. Examples of continuous relaxations: ei,j , Pi, Qi, PM , and H , represent indicator variables denoting if a given input image
contains a given digit, the discrete distribution over digits 1 to 4, the discrete distribution over digits 5 to 8, the discrete distribution over
values 1 to M , and the entropy function, respectively.

a way of encoding the possible two digits in the cell indi-
cated by data point xi (one from {1...4} and the other from
{5...8}), is to use 8 binary variables ei,j ∈ {0, 1}, while
requiring

∑4
j=1 ei,j = 1 and

∑8
j=5 ei,j = 1. In DRNets,

we model probability distribution Pi and Qi over digits 1 to
4 and 5 to 8 respectively: Pi,j ,j=1...4 andQi,j ,j=1...4 denote
the probability of digit j and the probability of digit j+4, re-
spectively. We approximate the cardinality constraint of ei,j
by minimizing the entropy of Pi and Qi, which encourages
Pi and Qi to collapse to one value. Another combinato-
rial constraint in Multi-MNIST-Sudoku is the All-Different
constraint, where all the cells in a constrained set S, i.e.,
each row, column, and any of four 2x2 boxes involving
the corner cells, must be filled with non-repeating digits.
For a probabilistic relaxation of the All-Different constraint,
we analogously define the entropy of the averaged digit
distribution for all cells in a constrained set S, i.e., H(P̄S) :

H(P̄S) = −
∑4
j=1

(
1
|S|
∑
i∈S Pi,j

)
log

(
1
|S|
∑
i∈S Pi,j

)
In this equation, a larger value implies that the digits in
the cells of S distribute more uniformly. Thus, we can
analogously approximate All-Different constraints by max-
imizing H(P̄S) and H(Q̄S). One can see, by minimizing
all H(Pi) and H(Qi) to 0 as well as maximizing all H(P̄S)
and H(Q̄S) to log |S|, we find a valid solution for the two
4x4 Sudoku puzzles, where all Pi,j are either 0 or 1. We also
relax k-sparsity constraints, which for example in Crystal-
Phase-Mapping state the maximum number k of pure phases
in an XRD-pattern, by minimizing the entropy of the phase
distribution PM below a threshold c < log k. We choose
the threshold c < log k because the entropy of a discrete
distribution PM concentrated on at most k values cannot
exceed log k. Note that other relaxations can be adapted in
DRNets, for these and other tasks.

Constraint-Aware Stochastic Gradient Descent: We in-
troduce a variant of standard SGD method called constraint-
aware SGD, which is conceptually similar to the optimiza-
tion process in GraphRNN (You et al., 2018), to tackle the
optimization of global penalty functions ψgj ({φθ(xk)|k ∈
Sj}), which involve several (potentially all) data points. We
define a constraint graph, an undirected graph in which each
data point forms a vertex and two data points are linked if
they are in the same global constraint. Constraint-aware
SGD batches data points from the randomly sampled (max-
imal) connected components in the constraint graph, and

Algorithm 1 Constraint-aware stochastic gradient descent
optimization of deep reasoning networks.

Input: (i) Data points {xi}Ni=1. (ii) Constraint graph. (iii)
Penalty functions ψl(·) and ψgj (·) for the local and the
global constraints. (iv) Pre-trained or parametric gener-
ative decoder G(·).

1: Initialize the penalty weights λl, λgj and thresholds for
all constraints.

2: for number of optimization iterations do
3: Batch data points {x1, ...,xm} from the randomly

sampled (maximal) connected components.
4: Collect the global penalty functions {ψgj (·)}Mj=1 con-

cerning those data points.
5: Compute the latent space {φθ(x1), ..., φθ(xm)}

from the encoder.
6: Adjust the penalty weights λl, λ

g
j and thresholds ac-

cordingly.
7: minimize 1

m

∑m
i=1 L(G(φθ(xi)),xi) + λlψ

l(φθ(xi))

+
∑M
j=1 λ

g
jψ

g
j ({φθ(xk)|k ∈ Sj}) using any standard

gradient-based optimization method and update the
parameters θ.

8: end for

optimizes the objective function w.r.t. the subset of global
constraints concerning those data points and the associated
local constraints. For example, in Multi-MNIST-Sudoku,
each overlapping Sudoku forms a maximal connected com-
ponent, we batch the data points from several randomly sam-
pled overlapping Sudokus and optimize the All-Different
constraints (global) as well as the cardinality constraints
(local) within them. However, in Crystal-Structure-Phase-
Mapping, the maximal connected component becomes too
large to batch together, due to the constraints (phase field
connectivity and Gibbs-alloying rule) concerning all data
points in the composition graph. Thus, we instead only
batch a subset (still a connected component) of the maxi-
mal connected component – e.g., a path in the constraint
graph, and optimize the objective function that only con-
cerns constraints within the subset (along the path). By
iteratively solving sampled local structures of the ”large”
maximal component, we cost-efficiently approximate the
entire global constraint. Moreover, for optimizing the over-
all objective, constraint-aware SGD dynamically adjusts the
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thresholds and the weights of constraints according to their
satisfiability, which can involve non-differentiable functions.
For efficiency and robustness, DRNets solve all instances
together using constraint-aware SGD (see Algorithm 1).

4. Experiments
We illustrate the power of DRNets on two pattern de-mixing
tasks – disentangling two overlapping hand-written Sudokus
(Multi-MNIST-Sudoku) and inferring crystal structures of
materials from X-ray diffraction data (Crystal-Structure-
Phase-Mapping). Note that, since DRNets are an unsuper-
vised framework, we can apply the restart (Gomes et al.,
1998) mechanism, i.e., we can re-run DRNets for instances
that do not satisfy all constraints. All the experiments are
performed on one NVIDIA Tesla V100 GPU with 16GB
memory. For the training process of our DRNets, we select
a learning rate in {0.0001, 0.0005, 0.001} with Adam opti-
mizer (Kingma & Ba, 2014), for all the experiments. For
baseline models, we followed their original configurations
and further fine-tuned their hyper-parameters to saturate
their performance on our tasks.
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Figure 5. (a) The latent space of DRNets for Multi-MNIST-
Sudoku. (b) Accuracy comparison. We show ”test time + training
time” for supervised baselines, and ”solving time” for DRNets.

4.1 Multi-MNIST-Sudoku: We generated 160,000 input
data points for each training set, validation set and test
set, where each data point corresponds to a 32x32 image of
overlapping digits coming from MNIST (LeCun et al., 1998)
and every 16 data points form a 4-by-4 overlapping Sudokus.
The training set and the validation set are only used by
supervised baselines while DRNets directly solve the test set
without using them. For DRNets, we also generated an extra
cGan dataset, which is composed of 25,000 original MNIST
images for pre-training the conditional GAN. Note that these
four datasets are generated using disjoint sets of MNIST

images. For Multi-MNIST-Sudoku, the encoder of DRNets
is composed of two ResNet-18 (He et al., 2016) networks
and we use a conditional GAN (Mirza & Osindero, 2014) as
our generative decoder (denoted as G(·)), which is trained
using the digits in the cGan dataset. Note that this is the only
supervision we have in this task, which is even weaker than
the general concept of the weakly-supervised setting (Zhang
et al., 2017). DRNets batch every 16 data points together
to enforce the All-Different constraints among the cells of
each Sudoku. As shown in Fig.5a, given the input cell xi,
two networks encode a two-part latent space: one encoder
network has a 8-dimensional output layer and models the
two distributions Pi and Qi for the two overlapping digits;
the other encoder network outputs eight 100-dimensional
(800 dimensions in total) latent encoding zi,j to encode the
shape of the possible eight digits conditioned on the input
mixture, and is used by the generative decoder to generate
the reconstructed digits G(zi,j). DRNets estimate the two
digits in the cell by computing the expected digits over Pi
and Qi, i.e.,

∑4
j=1 Pi,jG(zi,j) and

∑4
j=1Qi,jG(zi,j+4),

and reconstruct the original input mixture.

We used the L1-loss as the reconstruction loss with a weight
of 0.001. The reasoning loss enforces the Sudoku rules and
includes the continuous relaxation of the cardinality (2×16
cells) and All-Different (2×(4 rows + 4 columns + 4 boxes))
constraints for every 16 data points, with initial weights of
0.01 and 1.0, respectively.

To demonstrate the power of reasoning, we compared our un-
supervised DRNets with supervised start-of-the-art MNIST
de-mixing models – CapsuleNet (Sabour et al., 2017) and
ResNet (He et al., 2016), and a variant of DRNets that re-
moves the reasoning modules (”DRNets w/o Reasoning”).
To saturate the performance of baseline models, we also ap-
plied a post-process local search for them to incorporate the
Sudoku Rules. Specifically, we did a local search for the top-
2 (top-3 would take too long to search) most likely choice
of digits for each Sudoku of the two overlapping Sudokus
and try to satisfy Sudoku rules with minimal modification
compared with the original prediction. We evaluate both
the percentage of digits that are correctly de-mixed (digit
accuracy) and the percentage of overlapping Sudokus that
have all digits correctly de-mixed (Sudoku accuracy). Em-
powered by reasoning, DRNets significantly outperformed
CapsuleNet, ResNet, and DRNets without reasoning, per-
fectly recovered all digits with the restart mechanism (see
Fig.5b), and additionally reconstructed the mixed images
with high-quality (see Fig.1).

4.2 Crystal-Structure-Phase-Mapping concerns inferring
crystal structures from a set of X-ray diffraction measure-
ments (XRDs) of a given chemical system, satisfying ther-
modynamic rules. Crystal structure phase mapping is a very
challenging task, a major bottleneck in high-throughput ma-



Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning

G z#,%

XRD Measurement 𝑥'

Encoder
E(⋅)

𝑃',%

…

𝑃',.

𝑃',/

𝑧',%

𝑧',/

𝑧',.

0.93

0.06

0.01

Generative Decoder
𝐆 ⋅ (GMM)

∑ P#,: ⋅ G z#,:  ;
:<%

G z#,/

…
G z#,;• Gibbs Phase Rule

• Gibbs-Alloying Rule
• Phase Field Connectivity
• Multiplicative Shifting

Thermodynamics Rules:

(ICDD stick patterns)

DRNet Reconstructed XRD
MeasurementA batch is a sampled path in 

the composition graph
Generated

Phase Patterns

Input: XRD patterns 
in composition graph

Chemical
Systems:

# Phases
Discovered

Phase 
Concentration

Accuracy

Reconstruction
Losses

Phase Fidelity
Loss

Thermodynamic Rules Satisfaction
(Percentage of data points / phase 
field that satisfy each constraint)

Al-Li-Fe (%) L1 Loss L2 Loss JS distance
×10>/

Phase Field 
Connectivity Gibbs Gibbs-

Alloy
DRNets 6 100 0.039 <0.001 <0.001 100% 100% 100%
IAFD 6 80.6 6.921 0.778 11.920 100% 100% 100%

NMF-k 6 63.1 29.805 7.169 46.156 71% 94% 87%

Bi-Cu-V (%) L1 Loss L2 Loss JS distance
×10>/

Phase Field 
Connectivity Gibbs Gibbs-

Alloy
DRNets 13 N/A 3.916 0.268 0.482 100% 100% 100%
IAFD 13 N/A 11.254 1.781 55.571 100% 100% 100%

NMF-k 5 N/A 10.453 1.577 48.674 48% 99% 99%

log-scale L1 recon loss
Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe
Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe
Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe
Al

Li Fe
Al

Li Fe
Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

Al

Li Fe

IA
FD

D
R

N
et

s
G

ro
un

d
Tr

ut
h

N
M

F-
k

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

(a)

(b) (c)

composition 
graph of Al-Li-Fe 

system

Figure 6. (a) The latent space of DRNets for Crystal-Structure-Phase-Mapping. M denotes the number of possible phases. (For Al-Li-Fe,
M = 159; For Bi-Cu-V, M = 100.) (b) Comparison of phase concentration and reconstruction loss for different methods in Al-Li-Fe
oxide system. Note that, 6 pure phases (out of 159 possible candidates) appear in the system and result in 15 different types of mixtures.
Each dot represents an XRD measurement whose size is proportional to the estimated phase concentration. DRNet’s phase concentration
closely match the ground truth in contrast to IAFD’s and NMF-k’s. The heatmap on the right shows that DRNets reconstruct the XRD
measurements much better than other methods with respect to the L1 loss. (c) DRNets outperform both IAFD and NMF-k with all
evaluation criteria on both systems.

terials discovery: Each X-ray measurement may involve
several mixed crystal structures; each chemical system in-
cludes hundreds of possible crystal structures; for each crys-
tal structure pattern, we only have an idealized model of
pure crystal phases; the thermodynamic rules are also com-
plex; the crystal patterns are difficult for human experts to
interpret; and we only have hundreds of (unlabeled) data
points for each chemical system, which greatly challenges
classical data-hungry deep learning models.

Herein, we illustrate DRNets for crystal structure phase
mapping for two chemical systems: (1) a ternary Al-Li-Fe
oxide system (Le Bras et al., 2014), which is theoretically
based, synthetically generated, with ground truth solutions,
and (2) a ternary Bi-Cu-V oxide system, which is a more
challenging real experiment-based system, more noisy and
uncertain. For each system, the input data points are mix-
tures of XRDs, associated with a composition graph iden-
tifying elemental compositions and the constraint graph
of data points, in which there is an edge between two data
points if they share a constraint. Specifically, each data point
is associated with a D-dimensional vector representing the
intensity of the mixture of XRDs at different diffraction
angles (referred as Q values) and a 3-dimensional composi-
tion vector representing the proportion of the three different
metal elements at that data point (e.g., [80% of Al, 5% of
Fe, 15% of Li]). Since there are only 2 degrees of freedom
in the composition vector, we can map each data point into a
2-D triangular composition space (See Fig.6a) and build the
composition graph by adding edges between the data points

in the 2-D triangular composition space through Delaunay
triangulation. We also collected a library of known crystal
structures from the International Centre for Diffraction Data
(ICDD) database. Each crystal structure (also named phase)
is given as a list of diffraction peak location-amplitude pairs,
(referred to as stick pattern), representing the ideal phase
patterns measured in perfect conditions (see Fig.6a). For
the Al-Li-Fe oxide system, we have 231 data points (mix-
tures of XRDs) in the composition space, 159 known stick
patterns for the known phases, and each data point has 650
different Q values Qi ∈ [15◦, 80◦] and the corresponding
intensities Ii ∈ [0, 1]. For the Bi-Cu-V oxide system, we
have 307 data points in the composition space, 100 ICDD
known stick patterns, and each data point has 4096 different
Q values Qi ∈ [5◦, 45◦] and the corresponding intensities
Ii ∈ [0, 1]. To better use the memory, we down-sampled the
raw data of Bi-Cu-V oxide system to 300 different Q values.

Given the input D-dimensional vector representing the in-
tensity of the mixture of XRDs at different diffraction an-
gles, we use four 3-layer-fully-connected networks as our
encoder to encode a two-part latent space, which captures
the probabilities (denoted as Pi,j) and shapes of the possible
phases (denoted as zi,j) and is constrained by the reasoning
module to satisfy the thermodynamic rules (See Fig.6a). To
model more realistic conditions, the generative decoder of
the DRNets use Gaussian mixture models (Lindsay, 1995)
to approximate the real phase patterns from stick patterns
where the relative peak locations and mixture coefficients
are given by the stick locations and amplitudes and the
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peak width, multiplicative location shift, and possible am-
plitude variance are parameterized by the latent encoding
zi,j . The overall objective function of the DRNets combines
responses from the generative decoder and the reasoning
module, which is optimized using constraint-aware stochas-
tic gradient descent. Specifically, the output of the first
three networks in the encoder are M -dimensional vectors:
(Pi,1, ..., Pi,M ), (αi,1, ..., αi,M ), (σi,1, ..., σi,M ) (M is the
number of possible phases, e.g., 159 for the Al-Fe-Li ox-
ide system), which represent the probability Pi,j of each
phase-j at data point i, the multiplicative shifting ratio αi,j ,
and the standard deviation σi,j of the Gaussians character-
izing the peaks in phase-j, respectively. The output of the
last network is a M × K-dimensional vector, represent-
ing the possible amplitude variance of peaks in each phase.
Here, K is the number of maximal peaks in a stick pattern
(K = 200). For the first 3 networks there are 1024, 1024,
and 512 hidden units, respectively per layer, and for the last
network there are 512, 512, and 32 hidden units, respectively
per layer. The last layer has fewer hidden units given its
high-dimensional output space (M ×K). All networks use
ReLU (Nair & Hinton, 2010) as their activation function.

In crystal-structure-phase-mapping, we impose the follow-
ing thermodynamic rules: Phase Field Connectivity, Gibbs
Phase Rule and Gibbs-Alloying Rule (Gomes et al., 2019).
As stated in the section 3, we solve the large global con-
straints (e.g., Phase Field Connectivity) via sampling their
local structure and solving each of them iteratively. Specifi-
cally, for each oxide system, we sampled 100,000 paths in
the composition graph via Breadth First Search to construct
a path pool. Then, for every iteration, DRNets randomly
sample a path from the pool and batch the data points along
that path (see Fig. 6). Finally, we only reason about the
thermodynamic rules along the path and solve the global
constraints iteratively . In this task, we used the Jensen-
Shannon distance (JS distance) with a weight of 20.0 plus
the L2-distance with a weight of 0.05 as the reconstruction
loss. We use the JS distance since the location of peaks are
the most important characteristics of a phase pattern and
mismatching peaks would cause a large JS distance. To com-
pute the JS distance, we normalize the area under each XRD
pattern to be 1 and use a ε of 1e-9 to avoid division by zero.
Due to the different noise level, we use different weights
for Gibbs Rule (1.0 and 30.0) and Phase Field Connectivity
(0.01 and 3.0) for Al-Li-Fe oxide system and Bi-Cu-V oxide
system respectively.

We compared DRNets with IAFD (Gomes et al., 2019)
and NMF-k (Stanev et al., 2018), which are both state-
of-the-art non-negative matrix factorization (NMF) based
unsupervised de-mixing models for crystal-structure-phase-
mapping. NMF-k improves the pure NMF algorithm (Long
et al., 2009) by clustering common phase patterns from thou-
sands of runs. However, NMF-k does not directly enforce

thermodynamic rules and therefore the solutions produced
are often not completely physically meaningful. IAFD uses
external mixed-integer programming modules to enforce
thermodynamic rules during the de-mixing. However, due
to the gap between the external optimizer and NMF mod-
ule, the solution of IAFD satisfies constraints at the cost
of huge reconstruction loss and is still far from the ground
truth. Our evaluation criteria include phase concentration
accuracy (i.e., accuracy of the combination of de-mixed
phases for each XRD mixture, only available for Al-Li-Fe
system), phase fidelity loss, reconstruction losses, and the
satisfaction of thermodynamic rules. Note that, before eval-
uating the reconstruction losses, we fit the de-mixed phases
(for all methods) to the closest idealized phases using the
stick patterns to exclude noise (Le Bras et al., 2014). Mean-
while, we quantified the phase fidelity loss by measuring
the JS distance between the de-mixed phases and the clos-
est ideal phases. Note that, only DRNets and NMF-k can
determine the number of discovered phases automatically.
Thus, we provide extra information (ground-truth/experts’
conclusion) for IAFD to set k = 6 (k = 13) for Al-Li-Fe
(Bi-Cu-V) oxide system. As shown in the Fig.6b-c, for the
Al-Li-Fe oxide system, the phase concentration (the distri-
bution of de-mixed pure phases over all data points of that
chemical system) of either IAFD or NMF-k is far from the
ground truth. In contrast, DRNet almost exactly recovered
the ground truth solution (100% concentration accuracy) by
seamlessly integrating pattern recognition, reasoning and
prior knowledge. Moreover, by explicitly incorporating the
ICDD stick pattern information into DRNets, the phases
de-mixed by DRNets are much closer to the ICDD patterns
than those from IAFD and NMF-k (see phase fidelity loss).
For Bi-Cu-V oxide system, DRNets solved this previously
unsolved real system, producing valid crystal structures and
significantly outperforming IAFD and NMF-k w.r.t. recon-
struction errors and phase fidelity loss. In addition, mate-
rials science experts thoroughly checked DRNet’s solution
of Bi-Cu-V oxide system, approved it, and subsequently
discovered a new material that is important for solar fuels
technology. In contrast, neither the solution from NMF-k
nor IAFD is completely physically meaningful.

5. Conclusions and future work
We propose DRNets, a powerful end-to-end framework that
combines deep learning with constraint reasoning for solv-
ing unsupervised pattern de-mixing tasks. DRNets outper-
form the state of the art for de-mixing MNIST Sudokus
and crystal-structure phase mapping, solving previously un-
solved chemical systems and leading to the discovery of new
solar fuels materials, substantially beyond the reach of other
methods and materials science experts’ capabilities. Future
research includes exploring DRNets for incorporating other
types of constraints, prior knowledge, objective functions,
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and even label supervision for other applications.
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